
W H I T E  P A P E R

TPM 2.0 and Certificate-Based 
IoT Device Authentication

WHITEPAPER

Paul Griffiths, Software Engineer, GlobalSign

https://www.globalsign.com/en/


W H I T E  P A P E R1W H I T E  P A P E R

Content
Introduction 2

What is a TPM? 2

Device Certification 3

The Protocol 3

Public and Private Areas 4

What the CA Does 4

What the TPM Does 5

Conclusion 6

In this article, we will look at how the TPM 2.0 privacy preserving protocol for distributing credentials for keys 
on a TPM (the “TPM Protocol”) can provide the manufacturers of IoT devices and the services which use 
those devices with more confidence in their certificate-based device authentication processes.

https://www.globalsign.com/en/


2W H I T E  P A P E R

What is a TPM?
A Trusted Platform Module, or TPM, is a secure 
system component which, in conjunction with other 
system components, allows an independent entity to 
determine if a device’s trusted computing base has 
been compromised. TPMs are in widespread use on 
modern PCs and notebooks for applications including 
secure boot, full disk encryption, and hardware-based 
password protection. The TPM specifications 
(version 2.0 being the most recent) are developed by 
the Trusted Computing Group (TCG).  

For this article, the key fact is that a TPM can 
function as a low-cost cryptographic co-processor, 
providing secure, tamper-proof, hardware-based key 
generation and encrypted key storage. Since each 
TPM has a unique and secret Endorsement Key 
(EK), usually certified by a trusted CA, convenient 
authentication solutions can be developed which 
ensure a communicating device contains a legitimate 
and identifiable TPM. When combined with other 
TPM capabilities such as secure boot and hardware/
software attestation, the security of an IoT 
deployment can be greatly enhanced.

Introduction
Digital signatures, when properly implemented, can 
provide a strong basis for believing that a message 
was sent by a known sender, and that it was not 
altered during transmission, and these two properties 
are fundamental to any trusted communication. 
The underlying public-key cryptography can provide 
us with a high level of assurance that the message 
could only have originated with the possessor of the 
private key corresponding to that sender’s public 
key. Since - in contrast with symmetric cryptography 
- that private key never needs to be shared with 
anyone else, if we are confident that the sender has 
appropriately protected their private key, then we 
can be confident that the message came from the 
sender, and we can use this confidence as a basis for 
authentication.

However, we can only have this confidence if we 
are sure that the public key in our possession really 
does belong that particular sender. If the sender is 
a human being who personally gave us a copy of 
the key then things are easy, but the estimated 30 
billion devices on the Internet of things (IoT) pose a 
more significant problem. Many of these devices are 
increasingly in our homes and our vehicles, as well as 
in critical civilian and even military infrastructure, and 
their scope and number continue to grow rapidly. 
Compromised devices or private keys present a 
grave security risk, and more than ever, services for 
IoT devices need to be absolutely sure that they are 
communicating with genuine, authorized and secure 
devices. 

The TPM Protocol can provide manufacturers of 
IoT devices and the services which use those devices 
with more confidence in their certificate-based 
authentication processes for IoT devices containing a 
TPM.

https://www.globalsign.com/en/
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.16.pdf
https://trustedcomputinggroup.org/


W H I T E  P A P E R3W H I T E  P A P E R

This approach also has privacy benefits. Because the 
EK uniquely identifies the device, if the EK certificate 
could be used for authentication, a device’s activity 
could be tracked and correlated across multiple 
services, which may be undesirable. By using 
secondary certificates, a separate certificate could be 
issued for each different service the device accesses, 
or even a separate certificate for each access to the 
same service, and privacy can be maintained.

Of course, this shifts the burden of identifying the 
TPM onto the CA. If the EK can’t be used for digital 
signatures, how does the CA verify that the device 
possesses the private component?

The Protocol
The TCG solution is conceptually simple. Rather 
than asking the device to prove it possesses the EK 
private component before issuing a certificate, the 
CA essentially issues a certificate encrypted with 
the EK public component such that only the device 
possessing the EK private component will be able to 
decrypt it. In addition, the device will only be able 
to decrypt the certificate if the key being certified is 
also loaded on the TPM. The users of the certificate 
can therefore be confident not only that the device 
contains a valid TPM, but that the key it is using to 
authenticate itself is also protected by the TPM, and 
therefore at a lower risk of compromise. 

Device Certification
The EK is unique to an individual TPM. It is generated 
inside the TPM (or burned into the TPM by the 
manufacturer), and the private component is 
protected by the TPM hardware and cannot be read 
or exported from the TPM. Once we have verified 
the EK public component from its certificate,1 then if 
we can prove an IoT device possesses the EK private 
component, we have positively identified the TPM.

When a device wants to authenticate itself with 
an online service, a common solution is to use 
certificate-based TLS client authentication. During 
the TLS handshake, the device provides a copy 
of its certificate to the server and digitally signs 
some protocol-defined information to prove that 
it possesses the private key corresponding to the 
public key in the certificate. The server verifies 
the certificate against its database of trusted CA 
certificates, and then cryptographically verifies the 
digital signature provided by the device. If both steps 
are successful, the device is authenticated.2 

The problem is that the use of the EK is restricted by 
the TPM to a limited set of decryption operations. 
The device therefore cannot use it to create digital 
signatures, and so it cannot use its EK certificate for 
TLS client authentication in this way.

The solution is for the device to use the TPM to 
generate a second hardware-protected key which 
can be used for digital signatures, and to have that 
new key certified by a CA. The CA verifies the EK 
and, if successful, issues the device with a certificate 
for this new key which it can use for TLS client 
authentication.

1 For the remainder of this article, we will assume we are working with a TPM with an EK certificate issued by a trusted CA. 
2  The server may perform additional checks, of course.

If we are confident that the sender has 
appropriately protected their private 
key, then we can be confident that the 
message came from the sender

https://www.globalsign.com/en/


4W H I T E  P A P E R

The “name” of a key is actually not a name at all, but 
a hash of its entire public area using the specified 
hash algorithm. The effect of this is that if any piece 
of the public area changes, its “name” will also 
change. The significance of this will be made clear 
shortly.

What the CA Does
In additional to a copy of the EK certificate, the CA 
usually needs to receive, at a minimum, the public 
areas of:
• The endorsement key – because it’s going to 

need the public key, the name hash algorithm, 
and the symmetric encryption algorithm;

• The key to be certified – because it needs the 
public key to put in the issued certificate, because 
it has to compute the “name”, and optionally so 
it can examine the other attributes and decide 
whether or not it wants to issue a certificate for 
this key at all.

 
If it decides to issue a certificate, the CA returns a 
“credentials blob”. This comprises two parts:
• An HMAC for authentication;
• The “credential” itself, encrypted with the 

symmetric algorithm specified by the EK’s public 
area

 
Ideally this would be enough. However there are two 
problems. The first is that the “credential” is limited 
in size to the size of the digest produced by the 
endorsement key’s name algorithm. With SHA256, 
for example, this would be 32 bytes, which is far too 
small to contain a certificate. Therefore the CA will 
encrypt the certificate separately with an entirely 
separate symmetric key it generates randomly, and 
the “credential” will actually be this symmetric key.
 

Public and Private 
Areas
To understand the protocol, we first need to know 
that each key on a TPM has a “public area” and a 
“private area”. For asymmetric keys, the private area 
contains the private key itself, and can either never 
be read or exported from the TPM (in the case of 
an EK) or can be exported only for storage in an 
encrypted form which can only be decrypted back 
on the same TPM.3 The public area, on the other 
hand, does not need to be confidential4 and is usually 
accessible to anyone with physical access to the TPM. 
It includes, among other things:
• The type of key (e.g. RSA, ECC, or a symmetric 

key);
• The hash algorithm used to compute its “name” 

(see below);
• The public component of the key, if it is an 

asymmetric key;
• The symmetric cryptographic algorithm it uses 

to encrypt child keys, if it’s a storage key (the EK 
is always a storage key); and

• Various attributes, such as whether it can be 
used for signing, or decryption, or both, or 
whether it’s capable of being duplicated to a 
different TPM.

3 Although the private area of a key can never be read directly, it is possible to create TPM keys which can be migrated or duplicated onto 
another TPM. As we will see, it’s possible for a CA to ensure it doesn’t issue certificates to keys which can be duplicated in this way.
4 Although it can still compromise privacy if it can be linked to a specific user or device.

https://www.globalsign.com/en/


W H I T E  P A P E R5W H I T E  P A P E R

The second problem is that both the HMAC and 
the encrypted credential need a secret key to 
recompute/decrypt, and the TPM has neither of 
them. The solution is that both keys are computed 
from a standard key derivation function (KDF) which 
has various inputs. All the inputs are public (e.g. the 
“name” of the key to be certified, certain specific 
strings mandated by the TPM library specification) 
and already available to the TPM, except for one: a 
random number, or “seed”, generated by the CA. To 
securely communicate this to the TPM, the CA will 
encrypt it using the EK public component. The TPM 
can decrypt the seed and use it with the standard 
KDF to compute the same HMAC and decryption 
keys that the CA used to create the credentials blob.
 
So the CA actually returns three things:
• A random seed, encrypted with the EK public 

component
• A credentials blob containing an HMAC and a 

symmetrically-encrypted credential
• A certificate, symmetrically-encrypted with this 

credential.

What the TPM Does
Once it’s received the information from the CA, the 
TPM first decrypts the seed using the EK private 
component. It then uses this seed with the KDF to 
derive the same HMAC key and decryption key that 
the CA used to create the the credentials blob.

Note that one other input to the KDF in this case 
is the “name” of the key to be certified, which the 
TPM will obtain directly from a key it currently has 
loaded. The CA, of course, also used this name to 
derive the encryption key, and we can now see its 
importance. Because the name is an input to the 
KDF, activation of the credential will fail if the public 
area of the key on the TPM does not have the exact 
same properties that the CA was led to believe it 
had. For example, if the device provides the CA with 
a public area stating the key cannot be duplicated 

to a different TPM, but then tries to activate the 
credential for a TPM key which actually can be so 
duplicated, the activation will fail and the device will 
be unable to decrypt and retrieve the certificate. 
If the device requests a certificate for a key which 
is not protected by the TPM at all, activation will 
similarly fail. 

Using the seed and the name of the key to be 
certified, therefore, the TPM:
• Uses the KDF to independently compute the 

secret key for the HMAC;
• Recomputes the HMAC to verify that the 

encrypted credential was not tampered with 
during transit;

• Uses the KDF to independently compute the 
secret key which is encrypting the credential; and

• Decrypts (or “activates”) and returns the 
credential.

 

The TPM’s job is now done. The device now has the 
credential, i.e. it has the symmetric key it needs to 
decrypt the actual certificate, which it can then do 
without the assistance of the TPM.

Note that because the EK is, in TPM terminology, 
a restricted decryption key, it can only be used for 
specific purposes defined by the TPM. In particular, 
a user cannot bypass the checks over the key to be 
certified by just manually decrypting the seed with 
the EK and using it to independently compute the 
HMAC and credential keys with the standard KDF. 
The TPM maintains integrity by only allowing the 
EK to perform the decryption in the context of the 
entire credential activation process.

https://www.globalsign.com/en/


6W H I T E  P A P E R

Conclusion 
The TPM Protocol enables service providers - by relying on a CA which implements it and using TPM-enabled 
devices - to ensure strong, hardware-based IoT device authentication, and IoT device manufacturers can give 
their products a competitive advantage by leveraging the capabilities of TPM 2.0.

GlobalSign’s Edge Enroll service offers certificates issued under an implementation of the TPM Protocol, along 
with an open-source client library and application to access it. Contact our sales team for further information.

https://www.globalsign.com/en/


GlobalSign US Office
Two International Drive
Suite 150, Portsmouth
New Hampshire 03801
Phone: 603-570-7060
Email: sales-us@globalsign.com

GlobalSign UK Office
Springfield House,
Sandling Road, Maidstone, 
Kent ME14 2LP
Phone: 01622 766766
Email: sales@globalsign.com

About GlobalSign

As one of the world’s most deeply-rooted certificate authorities, GlobalSign is the leading 
provider of trusted identity and security solutions enabling businesses, large enterprises, 
cloud-based service providers, and IoT innovators worldwide to conduct secure online 
communications, manage millions of verified digital identities and automate authentication and 
encryption. Its high-scale PKI and identity solutions support the billions of services, devices, 
people, and things comprising the IoT. A subsidiary of Japan-based GMO GlobalSign Holdings 
K.K and GMO Internet Group, GMO GlobalSign has offices in the Americas, Europe and Asia. 
For more information, visit https://www.globalsign.com 

W H I T E  P A P E RW H I T E  P A P E R

mailto:sales-us%40globalsign.com?subject=I%27m%20interested%20in%20learning%20about%20your%20IoT%20solutions
mailto:sales%40globalsign.com?subject=I%27m%20interested%20in%20learning%20about%20your%20IoT%20solutions
https://www.globalsign.com
https://www.globalsign.com/en/

		2020-09-24T15:24:24-0400
	Marketing




